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14.  ABSTRACT (concluded) 

 
In this paper, we present two emerging nonlinear filtering techniques, namely, the unscented Kalman filter (UKF) and particle 
filter (PF), and study their use in GNSS applications in comparison to the EKF. The UKF is also called the sigma-point Kalman 
filter (SPKF) and the PF has many variants in its implementation. In the EKF, both the state dynamics and measurement equations 
are linearized in order to apply the Kalman filter, which is only valid for linear Gaussian systems. Instead of truncating the 
nonlinear functions to the first order as in the EKF, the UKF and PF approximate the distribution of the state deterministically 
(sigma points) and randomly (particles), respectively, with a finite set of samples, and then propagate these points or particles 
through the exact nonlinear functions. Because the nonlinear functions are used without approximation, it is much simpler to 
implement and generates better results. 
After formulating these nonlinear filtering algorithms, this paper will illustrate their functionality and performance using satellite 
orbit determination as an example via computer simulation. Furthermore, we will discuss implementation issues and analyze the 
use of these nonlinear filtering techniques to solve other nonlinear problems in GNSS and navigation applications. 
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ABSTRACT 

Nonlinearities appear “everywhere” in the signal and data 
processing chain of the Global Navigation Satellite 
System (GNSS). At the “upper” end of the chain, 
ephemeris data modulated onto transmitted signals are 
predicted from satellite orbits whose determination is a 
well-known nonlinear estimation problem. At the “lower” 
end, within a GNSS receiver, the satellite signal tracking, 
position-fixing, and even integration with other sensors, 

such as an inertial navigation system (INS), all involve 
nonlinearity issues in one form or another. Either a small 
signal model or linearization is presently used to deal with 
nonlinearity. The former includes code and carrier 
tracking loops and the latter includes the extended 
Kalman filter (EKF) for orbit determination, position 
solution, and GPS/INS integration among others. 

In this paper, we present two emerging nonlinear filtering 
techniques, namely, the unscented Kalman filter (UKF) 
and particle filter (PF), and study their use in GNSS 
applications in comparison to the EKF. The UKF is also 
called the sigma-point Kalman filter (SPKF) and the PF 
has many variants in its implementation. In the EKF, both 
the state dynamics and measurement equations are 
linearized in order to apply the Kalman filter, which is 
only valid for linear Gaussian systems. Instead of 
truncating the nonlinear functions to the first order as in 
the EKF, the UKF and PF approximate the distribution of 
the state deterministically (sigma points) and randomly 
(particles), respectively, with a finite set of samples, and 
then propagate these points or particles through the exact 
nonlinear functions. Because the nonlinear functions are 
used without approximation, it is much simpler to 
implement and generates better results.  

After formulating these nonlinear filtering algorithms, this 
paper will illustrate their functionality and performance 
using satellite orbit determination as an example via 
computer simulation. Furthermore, we will discuss 
implementation issues and analyze the use of these 
nonlinear filtering techniques to solve other nonlinear 
problems in GNSS and navigation applications. 

INTRODUCTION 

Kalman filtering is widely used in both GPS Control 
Segment and User Segment. The GPS user solution is 
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calculated by a Kalman filter embedded in the GPS 
receiver, which makes use of the Space Vehicle (SV) 
orbit and time scale information contained in the 
navigation data sets generated by the Operational Control 
Segment (OCS) again using a Kalman filter. 

It is well known that the Kalman filter was developed 
based upon linear dynamic and measurement models with 
additive white Gaussian noises. Under these assumptions, 
the state and its propagation remain Gaussian and are 
completely characterized by the probability density 
functions in terms of the mathematical expectation (i.e., 
mean value) and covariance matrix. Indeed, the Kalman 
filter provides the recursive equations to compute the 
mean value (i.e., the state estimate) and the estimation 
error covariance for propagation over time and for 
updating when the state measurements are available.  

For many practical applications, however, the state 
dynamic and/or measurement equations are not linear. In 
order to apply the Kalman filter, conventional approaches 
would linearize the nonlinear dynamic and measurement 
equations using Taylor series expansion (usually to the 
first order but sometimes to the second order terms) either 
around the predicted state values or along a pre-calculated 
reference trajectory, resulting in the so-called extended 
Kalman filter (EKF) [Maybeck, 1982]. This EKF 
approach has been used successfully in many applications 
but its implementation requires extensive tuning, 
continuous monitoring, and on-line adjustment if 
necessary to avoid bias and instability.  

It has been shown that it is much easier to approximate a 
Gaussian distribution than it is to approximate arbitrary 
nonlinear functions. Based on this, the unscented Kalman 
filter (UKF) has recently been introduced [Julier, Uhlman 
and Durrant-Whyte, 1995; Julier, 2002; Julier and 
Uhlman, 2004], which produces more accurate results 
than the EKF. Instead of truncating nonlinear functions to 
first order as in the EKF, the UKF approximates the 
distribution of the state with a finite set of samples (i.e., 
deterministically selected from the Gaussian distribution). 
These samples, called sigma points, are then propagated 
through the true nonlinear functions. The mean and 
covariance of the distribution after propagation and 
update are calculated as the weighted sum of the 
propagated sigma points and the weighted sum of their 
outer products, respectively. Because the nonlinear 
functions are used without approximation nor derivatives, 
it is much simpler to implement and generates better 
results (the performance is superior or similar to a 
truncated second order EKF but without the need to 
calculate Jacobians or Hessians of the nonlinear 
functions). However, the UKF cannot be applied to 
general non-Gaussian distributions. 

Sequential Monte Carlo methods or particle filters 
[Doucet, de Freitas, and Gordon, 2000; Liu 2001] allow 

for a complete representation of the posterior distribution 
of the states so that any statistical estimates such as 
means, modes, kurtosis and variances can be computed, 
thus providing a tool to deal with any nonlinearities or 
distributions. The basis of particle filters is the sequential 
importance sampling (SIS) algorithm, which is also 
known as bootstrap filtering, interacting particle 
approximation, and survival of the fittest among others. 
The key idea is to represent the posterior density function 
of the state given measurements by a set of random 
samples with associated weights and to compute the 
estimates based on the samples and weights. This point 
mass (hence the name “particle”) representation of a 
probability density generalizes the traditional Kalman 
filtering method to nonlinear, non-Gaussian, on-line 
estimation [Arulampalam et al., 2002]. 

The crucial step in the design of a particle filter is 
therefore how to choose the importance function or 
proposal distribution that can approximate the desired 
unknown posterior distribution reasonably well. The most 
common choice is to sample from the probabilistic model 
of the state evolution (transition prior) but it may fail if 
measurements appear in the tail of the prior or if the 
likelihood function is too peaked in comparison to the 
prior. To overcome this problem, the EKF or UKF-based 
Gaussian approximation can be used as the proposal 
distribution [Haykin 2001]. The latter also allows the 
control of the rate at which the tails of the proposal 
importance distribution go to zero, thus generating 
proposal distribution with larger high order moments and 
means that are closer to the true mean of the target 
distribution [van de Merwe, 2004]. 

In this paper, we are interested in these emerging 
nonlinear filtering techniques for GNSS related 
applications. In principle, they can be used wherever the 
EKF is used today in GNSS and other navigation 
applications. This includes orbit determination to be 
illustrated in this paper, UKF or PF-based position fixing 
with pseudoranges in GPS receiver, carrier phase tracking 
with PF [Amblard, Brossier, and Moisan, 2002], integer 
ambiguity resolution with PF [Azimi-Sadjadi and 
Krishnaprasad, 2001], blind equalization and estimation 
in fading channels [Djuric et al., 2003], and GPS/INS 
integration with PF [Frykman, 2003]. The EKF used in 
joint multipath estimation and PRN code acquisition [Iltis, 
1990] can be replaced by a UKF or PF. Other applications 
in navigation include quaternion-based orientation 
tracking [Kraft, 2003], cellular phone measurements-
based positioning, map matching to digital elevation 
profile, and collision avoidance for cars [Gustafsson et al., 
2003; Pham, Dahia, and Musso, 2003].  

After formulating the nonlinear filtering algorithms, we 
will discuss their implementation issues in this paper. We 
will present computer simulation results to illustrate the 
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functionality and performance of the nonlinear filters 
using satellite orbit determination as an example.  

NONLINEAR FILTERING WITH EKF, UKF & PF 

 In this section, some equivalent models that are suitable 
for nonlinear filter development are first described for 
nonlinear dynamic and measurement equations. The 
UKF/SPKF and PF are then presented. For simplicity, the 
details for the EKF are omitted, which can be found in 
many textbooks such as [Maybeck, 1982]. 

Nonlinear Dynamic and Measurement Models  

A nonlinear dynamic system can be represented by a state 
transition model with at least three forms, namely, the 
probability density, regression, and first-order 
linearization: 

p(xt|xt-1) (1a) 
xt = f(ut-1, xt-1, vt-1) (1b) 

)()(),,( 11111 vvGxxFvxufx tttttttt −+−+≈ −−−−−
 (1c) 

where xt ∈ Rnx denotes the state (including the hidden 
variables and/or parameters) of the system at time t, ut ∈ 
Rnu is some known input, vt ∈ Rnv is a noise term with 
covariance matrix Q, f: Rnx × Rnu × Rnv → Rnx is the 
deterministic nonlinear state transition model, and 

ttt

t
xxx

xf
tF =∂

∂= |)(  and 
vvv

vf
t tt

tG =∂
∂= |)(  are the Jacobians of the 

state model linearized around the reference value 
tx  and 

v , respectively. 

By the same token, the nonlinear measurement model can 
be put into one of the three forms as: 

p(yt|xt) (2a) 
yt = h(ut, xt, nt) (2b) 

)()(),,( nnLxxHnxuhy tttttttt
−+−+≈  (2c) 

where yt ∈ Rny is the measurement vector, nt ∈ Rnn the 
measurement noise with covariance matrix R, which is 
assumed to be independent of vt, h: Rnx × Rnu × Rnn → Rnu 
is the deterministic nonlinear measurement model, and 

ttt

t
xxx

xh
tH =∂

∂= |)(  and 
nnn

nh
t tt

tL =∂
∂= |)(  are the Jacobians of the 

measurement model linearized around the reference 
values tx  and n , respectively. 

UKF/SPKF 

The EKF only uses the first order terms of the Taylor 
series when expanding the nonlinear functions. As such, 
the linearization validity must be checked to avoid large 
errors built up in the estimated posterior distribution of 
the state when the higher order terms of the Taylor series 
expansion become significant. For this reason, higher-
order EKF and iterated EKF have been proposed in the 
past. 

Unlike the EKF, the UKF does not approximate the 
nonlinear dynamic and measurement models; it utilizes 
the true nonlinear models but instead approximates the 
distribution of the state. When the state distribution is 
Gaussian, a minimal set of deterministically chosen 
samples (i.e., sigma points) can be used to completely 
capture the true mean value and covariance of the state. 
These sigma points then propagate through the true 
nonlinear system and again capture the posterior mean 
and covariance accurately to the second order for any 
nonlinearity, with errors only introduced in the third and 
higher orders. In comparison, the EKF only calculates the 
posterior mean and covariance accurately to the first order 
with all high order moments truncated. 

The UKF is the application of the scaled unscented 
transformation (SUT) [Julier, 2002] to recursive 
minimum mean-square-error (MMSE) estimation. 
Consider a random variable x ∈ Rn ~ N(mx, Px). The 
covariance matrix is scaled up by a factor (n+κ), thus 
spreading the standard deviation by a factor of γ = κ+n . 
Now factorize the covariance matrix by, say, Cholesky 
decomposition, producing the square root 

xP . Construct 
2n+1 sigma points around the mean vector mx with the 
scaled spread square root γ

xP as: 

X = [mx, mx+ γ
xP , mx- γ xP ] (3) 

Let [X]i be the ith column of X (i.e., the ith sigma point 
vector, with the count starting from 0). Propagating it 
through a nonlinear function y = f(x) produces the 
posterior sigma point vectors as [Y]i = f([X]i) for i = 0 … 
2n. The mean and covariance are calculated from the 
weighted sample mean and covariance as: 

∑
=

=
n

i
i

m
iy Wm

2

0

][Y  (4a) 

T
yi

n

i
yi

c
iyy mmWP )][)][

2

0
−−= ∑

=

Y(Y(  (4b) 

T
yi

n

i
xi

c
ixy mmWP )][)][

2

0

−−= ∑
=

Y(X(  (4c) 

where Wi
m and Wi

c are the constant weights for the mean 
and covariance, respectively, given by: 

λ
λ
+

=
n

W m
0

, 
)(2

1
λ+

=
n

W m
i

, i = 1, …, 2n (5a) 

)1( 2
0 βα

λ
λ

+−+
+

=
n

W c , m
i

c
i WW = , i = 1, …, 2n (5b) 

where λ = α2(n+κ). 

The parameter κ ≥ 0 is chosen to ensure the positive semi-
definiteness of the covariance matrix, which defaults to 
zero. The parameter 0 ≤ α ≤ 1 controls the size of the 
sigma point distribution (probabilistic spread in terms of 
covariance) and takes a small number to avoid sampling 
non-local effects when nonlinearities are strong. The 
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parameter β is a weighting term used to incorporate any 
knowledge of higher order moments of the distribution. 
For a Gaussian, the optimal choice β = 2 [van de Merwe, 
2004]. 

Figure 1 shows the propagation of a random variable 
through a nonlinear function with the SUT (as in the 
UKF) in comparison to the first order linearization (as in 
the EKF).  Its application to recursive estimation leads to 
the UKF, which includes the following steps. Step 1 – 
Construct an augmented state by concatenating the 
original state with the process noise and measurement 
noise. Step 2 – Calculate the covariance matrix for the 
augmented state and select the sigma points for the 
augmented state. Step 3 – Conduct the time-update by 
propagating the sigma points through the exact nonlinear 
process and measurement equations. Step 4 – Calculate 
the covariance matrix of the predicted measurements per 
sigma points (PYY) and the cross-covariance matrix 
between the predicted measurements and the augmented 
state (PXY). Step 5 – Conduct the measurement update 
using the Kalman filter gain as Kk = PYY(PXY)-1. 

Table 1 lists the algorithm that updates the mean and 
covariance of the Gaussian approximation to the posterior 
distribution of the state. As shown, there is no explicit 
calculation of Jacobians or Hessians. Since the covariance 
matrix can be expressed recursively in the square-root 
form, not only does the UKF outperform the EKF in 
accuracy and robustness, it does so at no extra 
computational cost. When the process and measurement 
noise terms are purely additive, there is no need to 
augment the system state with noise, further reducing the 
computational complexity. 

 
Figure 1 – Propagation of Random Variable Through 

Nonlinear Function: UKF vs. EKF 

Particle Filter and Hybrid Implementation 

Both the EKF and UKF reply on the Gaussian assumption 
and its approximation. The particle filtering method 
described in this section, however, does not require this 
assumption. But it has problems of its own. To overcome 

such problems, the particle filter may be combined with 
an EKF or UKF in a hybrid manner. The design of a 
particle filter is based on four basic ideas, which are 
discussed below. 

Discrete Approximation of PDF 

The first idea is the approximation of a continuous-
support distribution p(x0:t|y1:t) by N discrete samples x0:t

(i), 
“randomly” drawn from the distribution p(x0:t|y1:t), for i = 
1, …, N: 

∑
=

−≅
N

i

i
tttt xx

N
yxp

1

)(
:0:0:1:0 )(1)|( δ  (6) 

where the subscript “0:t” or “1:t” indicates the 
observation interval from 0 or 1 to t and δ(•) is the Dirac 
delta function. This is the so-called Monte Carlo method. 
With this approximation, the computation of expectation 
of any function of x0:t, g(•), is reduced from a complicated 
integration to a simple summation as: 

∑∫
=

≅=
N

i

i
ttttttttt xg

N
dxyxpxgxgE

1

)(
:0:0:1:0:0:0 )(1)|()()}({  (7) 

Table 1 - Unscented Kalman Filter 

 
Importance Sampling 

The second idea is the importance sampling. In the 
estimation problem, the posterior distribution p(x0:t|y1:t) is 
in fact what we want to estimation from data, thus not 
available for sampling directly. One way to get around 
this is to approximate the expectation over the unknown 
distribution p(x0:t|y1:t) by another expectation taken over a 
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UKF: Sample Distribution

Concatenation: Augment the state vector to include noise terms: 
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known easy-to-sample distribution q(x0:t|y1:t), called 
importance function , also known as proposal distribution 
(which we will use interchangeably): 

ttt
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where the variable wt(x0:t) is the unnormalized importance 
weight defined by: 
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The probability density function p(y1:t) in the denominator 
of Eq. (8) can be evaluated as: 
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where Eq{•} is the expectation taken over the importance 
function or proposal distribution q(x0:t|y1:t).  

Following Eq. (10), p(y1:t) = Eq{wt(x0:t)} can be taken out 
of the integral of Eq. (8), still in the denominator, though. 
By consequence, the numerator of Eq. (8) can be 
evaluated over q(x0:t|y1:t) in the same manner, leading to 
Eq{gt(x0:t)wt(x0:t)}. 

When these expectations are approximated as in Eq. (6) 
by drawing N samples from the importance function 
(proposal distribution) q(x0:t|y1:t), we have: 
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The normalized importance weight )(~ i
tw is used in the last 

equality of Eq. (11a) with 1~
1

)( =∑
=

N

i

i
tw . 

Sequential Importance Sampling (SIS) 

The third idea is the sequential importance sampling 
(SIS). Under the assumptions that the underlying state 

corresponds to a Markov process (i.e., p(x0:t) = 
p(x0)Πt

j=1p(xj|xj-1)), the observations are conditionally 
independent given the state (i.e., p(y1:t|x0:t) =Πt

j=1p(yj|xj)), 
and the importance function or proposal distribution is 
factorable (i.e., q(x0:t|y1:t) = q(x0:t-1|y1:t-1)q(xt|x0:t-1,y1:t-1) 
according to the Bayes’ rule), then the unnormalized 
importance weight can be estimated recursively as: 
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Eq. (12) provides a mechanism to sequentially update the 
importance weight given the conditional proposal 
distribution q(xt|x0:t-1,y1:t). Indeed, we can sample from 
this proposal distribution (i.e., generate N discrete 
samples x(i)

t according to q(xt|x0:t-1,y1:t)) and evaluate the 
likelihood and transition probabilities (i.e., p(yt|xt) and 
p(xt|xt-1) given by the process and measurement models of 
Eqs. (1a) and (2a), respectively) for theses samples. Table 
2 lists the algorithm for a generic particle filter with 
additional steps discussed below. 

Table 2. Generic Particle Filter 

 
Resampling and Diversification 

For any practical implementation, the number of samples 
that can be drawn from a distribution is limited. As such, 
the choice of importance function or proposal distribution 
becomes critical, creating other issues impeding the 
success of a particle filter. 

An easy choice of importance function for a process 
model with additive Gaussian noise is the transition prior: 

q(xt|x0:t-1,y1:t) ≈ p(xt|xt-1) ~ N{f(ut-1,xt-1,0), Qt-1} (13) 

However, this proposal distribution does not incorporate 
the latest data available and it runs the risk to deplete the 
samples in the sense that after a few iterations, one of the 
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normalized importance weights tends to 1 while the 
remaining weights tend to 0. This effectively removes a 
large number of samples from the sample set because 
their importance weights are numerically insignificant. 

To avoid this degeneracy, the fourth idea is the 
importance resampling, also called selection, in which 
samples with low importance weights are eliminated 
while samples with high importance are multiplied, 
keeping the total population of samples in the same level. 
Techniques for resampling include sampling importance 
resampling (SIR), residual resampling, and minimum 
variance sampling. 

Since the selection step favors the creation of multiple 
copies of the “fittest” particles (thus allows us to track the 
updated distributions), many “unfit” particles may end up 
with few or none copies, leading to sample 
impoverishment. To solve this problem, an additional step 
is therefore needed to introduce the sample diversification 
after the selection step without affecting the validity of 
the approximation. A brute force approach would increase 
the number of samples. But a refined technique is to 
implement a Markov chain Monte Carlo (MCMC) step, 
which moves new particles to areas of more interest in the 
state space by applying a Markov chain transition kernel 
[Ruanaidh and Fitzgerald, 1996]. Figure 2 illustrates this 
process. 

 
Figure 2- Resampling/Selection and Diversification 

Hybrid Kalman Particle Filter to Move Proposal Density 
Closer to Likelihood Function 

One cause for degeneracy frequently encountered when 
using importance functions as Eq. (13) is that the state 
transition prior and measurement likelihood density 
functions do not overlap (either too peaked or widely 
separated). This problem can be mitigated by moving 
particles to areas of high likelihood. One way to do so is 
to use a separate EKF to generate and propagate a 
Gaussian proposal distribution for each particle: 
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Since the UKF is more accurate than the EKF, thus 
having a more accurate importance function with bigger 
support overlap with the true posterior distribution, the 
estimates )(i

tx  and )(ˆ i
tP  from an UKF can be used to 

generate the proposal distribution as in Eq. (14). In this 
way, the EKF or UKF is effectively combined with a 
particle filter, yielding an extended Kalman particle filter 
(EKPF) or an unscented Kalman particle filter (UKPF). 

It is clear that EKPF and UKPF require very high 
computational power particularly for systems of large 
dimensions. To strike a balance between performance and 
computation, the Gaussian mixture sigma point particle 
filter (GMSPPF) combines an importance sampling (IS) 
based measurement updating with a scaled unscented 
transformation (SUT) based Gaussian sum filter for the 
time updating and proposal density generation as shown 
in Figure 3. 

 
Figure 3 – Block Diagram of Hybrid Kalman Particle Filter 

In GMSPPF, the IS-based measurement updating 
produces the weighted posterior particle set. It is followed 
by the resampling and diversification steps. The particles 
are then represented by a finite Gaussian mixture model 
found using the expectation-maximization (EM) 
algorithm. The resampling and diversification step may be 
omitted if a weighted EM algorithm is used in generating 
the Gaussian mixture thanks to its inherent kernel 
smoothing nature. 

EKF or UKF/SPKF can be used to time-propagate and 
then measurement-update each particle or each 
component of the Gaussian mixture. The posterior 
Gaussian mixture is then used as the proposal density to 
draw particles. In this way, each measurement is used 
twice, the first time by an EKF or UKF/SPKF to bring the 
measurement-updated importance function closer to the 
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likelihood function and the second time by the importance 
sampling-based update to produce more accurate estimate 
of the posterior distribution. Other implementation 
schemes of particle filter can be found in [Doucet, de 
Freitas, Gordon 2001; Liu, 2001; Ristic, Arullampalam 
and Gordon, 2004]. 

SIMULATION SCENARIO AND FILTER MODELS 

A simple tracking scenario is shown in Figure 4 where a 
satellite moves along a perfect circle of radius rs = 
26,560km at a constant angular velocity of ωs = 360o/12hr 
around the earth. The truth position, velocity, and 
acceleration components are generated by: 

θ(t) = θ0 – ωt, ω = 360/12 (o/hr) (15a) 
x(t) = rscos(θ(t)), y(t) = rssin(θ(t)) (15b) 

vx(t) = rsωsin(θ(t)), vy(t) = -rsωcos(θ(t)) (15c) 
ax(t) = -ω2x(t), ay(t) = -ω2y(t) (15d) 

With the notations r = a = [ax, ay]’ and r = [x, y]’, Eq. 
(15d) can be written into the form of gravitational 
acceleration: 

r
r

rr 3
2 µω −=−=  (16) 

where µ = k2M = 3,986×108m3/s2 is the earth’s 
gravitational constant, k2 is the universal constant of 
gravitation, and M is the mass of the earth. The equation 
holds because a = k2M/r2 = V2/r = ω2r, which leads to ω2 
= a/r = µ/r3. 

Monitor stations on the surface of the earth with radius re 
= 6,378km are assumed to lie within the orbital plane, 
thus making it a 2D scenario. The local horizon 
established for the monitor station makes about 14o with 
the x-axis in either direction, above which the satellite is 
visible to the monitor station. Since we will apply the 
kinematic method for orbit determination, the formulation 
is thus done in the earth-fixed coordinates. 

The pseudorange measurement denoted by r for the 
monitor station located at (xm, ym) is related to the satellite 
position (x, y) in a nonlinear manner as: 

rmm nyyxxr +−+−= 22 )()(  (17) 

where nr is the measurement noise with variance σr
2. 

The measurement noise variance is set to be σr
2 = (0.1m)2 

in the simulation, used by both the filters and in the 
measurement generation. Dual-frequency GPS receivers 
with P-code ranging have their pseudorange error 
variance around (10m)2 whereas carrier phase ranging 
measurements have their error variance around (0.01m)2 
or better. This choice for our simulation is “arbitrary” for 
the sake of convenience. 

The 2D satellite motion is considered by the tracker filter 
as two independent 3rd order models with the position, 
velocity, and acceleration as their state for each axis as: 

 

Figure 4 - Simple 2D Tracking Geometry 
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 (18)

where T = 1s is the sampling interval and the process 
noise wx(k) and wy(k) are random accelerations modeled 
as white Gaussian with their variances σwx

2 and σwy
2, 

respectively. In generating the truth orbit, we do not 
include any process noise (purely deterministic). 
However, the tracking filter will include a process noise 
with the variance σwx

2 = σwy
2 = (0.1m/s2)2 for the 

kinematics model of Eq. (18). 

An orbiting satellite is under pulling force that changes all 
the time. For the orbit arc in Figure 4, vx is always 
positive, changing from the initial value of 1,000m/s to 
the maximum of 3,874m/s and down to 1,000m/s again 
whereas vy changes from near 4,000m/s to near -
4,000m/s. The tangential linear velocity is a large number 
of 3,874m/s. The acceleration components ax and ay 
change about 0.5m/s2 over half of the two-hours arc. Over 
a short period of time, it can be considered constant 
provided that the process noise is properly adjusted to 
account for the changes. As such, the linear process 
model of Eq. (18) in the Cartesian coordinates is 
appropriate for orbit determination when accurate 
measurements are available at high sampling rate and but 
it does not provide any prediction capability. 

Any tracking filter that is based on the model of Eq. (18) 
alone does not take advantage of the well-behaved motion 
pattern, which. Furthermore, if there is only one monitor 
station with range measurements, the problem of 
geometric dilution of precision (GDOP) appears. In our 
simulation, we therefore consider two monitor stations, 
which are located at (xm, ym)) = (-re, 0) and (0, re), 
respectively. The arc of satellite orbit that is visible to 
both stations is from 166o to 104o in the second quadrant. 
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SAMPLE BEHAVIORS AND ANALYSES 

Four nonlinear filters, namely, EKF, UKF, PF, and 
GMSPPF, are implemented with sample behaviors 
presented here for visualization and comparison. In the 
simulation, the initial conditions are set as: 

0x̂  = x0 + [100, 10, 1, 100, 10, 1]T  (19a) 
P0 = diag{[1002, 102, 12, 1002, 102, 12]} (19b) 

for all the nonlinear filters except for the particle filter for 
the reasons to be explained later. 

Figures 6, 10, 14, and 18 show the true and estimated 
orbits for the four filters, EKF, UKF, PF, and GMSPPF, 
respectively. Except for the PF, the other three filter 
estimates are quite close with an approximate ranking of 
performance as EKF < UKF < GMSPPF. 

Figures 7, 11, 15, and 19 show the true, measured, and 
estimated ranges (the top plot) and the range residual 
errors (the bottom plot) for the four filters as seen from 
monitor station 1. Figures 8, 12, 16, and 20 show the true, 
measured, and estimated ranges (the top plot) and the 
range residual errors (the bottom plot) for the four filters 
as seen from monitor station 2. Since the measurement 
noise standard deviation is set to be 0.1m, it is reasonable 
to see that the range residual errors are also around 0.1m.  

Figures 9, 13, 17, and 21 show the estimation errors for 
position (top), velocity (middle) and acceleration (bottom) 
for the four filters. It can be seen that the estimates of the 
x-components are consistently better than the y-
component counterpart over this short orbit arc because of 
the influence of GDOP. 

To appreciate this, we run simulations over longer periods 
of time, which is increased from 100s in the previous 
simulations to the entire arc of 7466s (about 2 hrs). Only 
the results for UKF are shown here. Figure 22 shows the 
true and estimated orbit arc and Figure 23 shows the 
estimation errors for position (top), velocity (middle), and 
acceleration (bottom). 

As the satellite moves away from the negative x-axis 
toward the positive y-axis (clockwise), the GDOP 
degrades for the x-component but improves for the y-
component. This is visible in the top plot of Figure 23 as 
the x position error grows while the y position error is 
reduced. The position error ratio changes from ∆x:∆y = 
1:4.5 to 4.5:1, consistent with what is shown in Figure 24 
for the GDOP calculated as: 

[DOPx, DOPy] = diag{ 1)'( −HH } (20a) 
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where (x1, y1) and (x2, y2) are the locations of the monitor 
stations with their ranges to the satellite being r1 and r2, 
respectively. 

Figures 25 and 26 show the selection of initial sigma 
points for the UKF. The augmented state vector of the 
UKF includes the position (2), velocity (2), acceleration 
(2), process noise (2), and measurement noise (2). The 
total dimension is thus n = 10 and the number of sigma 
points is then 2n + 1 = 21. 

Since we plot a subspace of dimension 2 at a time per 
figure, we can only show five distinctive sigma points per 
subspace, which are located at the center and two 
extremes of the major and minor axes, respectively, of the 
ellipse. The parameters used for the unscented 
transformation are α = 1, β = 2, and κ = 0. The resulting 
radius is about 3σ, consistent with the spreading factor γ = 

10 ≈ 3. 

Figure 27 shows the initial 1,000 particles drawn from the 
initial distribution for the PF. Its processing results are 
presented in Figures 14 through 17. With 1,000 particles, 
the PF has to be initialized with much tighter conditions 
than the other three filters given in Eq. (19) as: 

0x̂  = x0 + [10, 0.1, 0.01, 10, 0.1, 0.01]’  (22a) 
P0 = diag{[102, 0.12, 0.012, 102, 0.12, 0.012]} (22b) 

Otherwise, the filter starts to diverge after few steps. The 
particular PF algorithm implemented in the simulation is 
the so-called bootstrap algorithm, also known as the 
condensation algorithm. As one of the rudimentary 
particle filters, it is known for such problems as sample 
impoverishment (depletion) among others. 

In this PF algorithm, the proposal density is Eq. (13) and 
the particle weight updating is simplified into: 

wi
k = wi

k-1×p(zk| xi
k|k-1)   

= wi
k-1×N{zk – h(uk, xi

k|k-1,0); Rk)} (23) 

which is the product of the old weight and the likelihood 
value of the latest observation given the propagated 
particle. The problem stems from the calculation of 
likelihood values. In the EKF and UKF, the innovations 
(i.e., the measurement prediction errors), no matter how 
large it may be, are weighted by the Kalman filter gain 
determined by the product of the predicted state 
estimation error covariance (APA’+Q) and the inverse of 
the measurement error covariance (HPH’+Q)-1. 

For our measurement model with σv
2 = (0.1m)2, if the 

orbit position errors are larger than 10m, the measurement 
prediction errors (or the innovations) can be larger than 
10m (further contributed by velocity and acceleration 
errors). This is equivalent to an error of 100σv in terms of 
the measurement noise standard deviation. The resulting 
likelihood values are practically zero. 

If the initial state errors are large and few or none of the 
initial particles drawn are near the true state within 10m 
or closer, two phenomena have been observed. One is that 
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only one or few particles survive the updating while all 
the rest are rendered zero. The PF algorithm collapses 
because there are no sufficient particles to continue. The 
second is that all likelihood values are close to zero and 
practically the same and by consequence, they produce no 
meaningful changes to the weights, thus making the 
updating process ineffective (as if no measurement 
update). 

To avoid the problem, one can either use smaller initial 
errors or a larger amount of particles. The latter may 
amount to excessive computation. We adopted the former 
technique in the present simulation with the small 
initialization errors as given by Eq. (22). Actually, various 
techniques have been proposed to perform on-line 
monitoring and editing [Gordon, Salmond, and Smith, 
1993; Gordon, Salmond, and Ewing, 1995]. 

To illustrate, we now look at the resampling process of 
the particle filter at the 100th time step.  As shown in 
Figure 28, the top plot is the initial weights from the 99th 
step in which all particles are assigned with an equal 
weight of 1/N with N = 1000 after resampling at the step. 

At Step 100, N samples are first drawn from the 
distribution of the process noise. These noise samples are 
used together with the state samples (i.e., the particles of 
Step 99) to predict the state at Step 100 according to Eq. 
(18). The results are shown in the middle plot of Figure 
28. Note that since the process noise variance is set to be 
very small (0.1m/s2)2, what we see in Figure 28 is 
essentially the prediction driven by the velocity and 
acceleration estimates. 

The bottom plot of Figure 28 shows the likelihood values 
for these predicted particles given an observation. It has a 
Gaussian shape. 

The updated weights are shown in the top plot of Figure 
29, which is the normalized product between the old 
weights and likelihood values. This also has a Gaussian 
shape. The middle plot of Figure 29 shows the state 
transition probability or the prior distribution of the state 
given the predicted state and estimated state of the 
previous step.  In this particular simulation run, the 
resampling threshold is set to be N, a typical number used 
by the bootstrap algorithm. Since the effective number of 
particles is always less than N, resampling is done every 
step. The weights after resampling are again equal to 1/N, 
as shown in the bottom of Figure 29. 

Figure 30 shows the particle indices before and after 
resampling. It has some discontinuities and horizontal 
segments. The latter indicates that those particles with 
large weights got multiplied during resampling. This is 
consistent with thegrouping seen in the top plot of Figure 
29 for the weights prior to resampling. 

To avoid depletion of particles or impoverishment, one 
technique is to redraw particles from an analytic 
distribution estimated from data as done in GMSPPF with 
a Gaussian mixture shown in Figures 18 to 21. Additional 
simulation results can be in [Yang, 2004]. 

MONTE CARLO SIMULATION RESULTS AND 
ANALYSES 

The Monte Carlo simulation results are presented in this 
section. For easy comparison, we use the same simulation 
scenarios and the same initial conditions for the four 
nonlinear filters. While the initial conditions were held 
the same, the observation noise was different as it was 
drawn from the random noise generator in each Monte 
Carlo run. Similarly, the state particles were drawn 
differently for each run. 

In the first case, we conducted 500 “independent” Monte 
Carlo runs with 1000 particles over 500 time steps (one 
second per step). Figure 32 shows the root mean square 
(RMS) errors of the measurement residuals at two 
monitor stations. The RMS value for an error is calculated 
using the following recursive formula: 

RMSe
2(n) = (1-1/n) RMSe

2(n-1) + (1/n)e2(n) 
RMSe(0) = 0, n = 1, 2, … (24) 

where e(n) is the error term of a variable of interest at the 
nth Monte Carlo run and RMSe(n) is the resulting RMS 
value including that run. 

In the following plots, we select not to show the results of 
the particle filter (the bootstrap algorithm) because it 
required a different initialization as explained previously. 
In addition, we observed some runs with divergence for 
the PF without applying any on-line editing as 
recommended in the original papers [Gordon, Salmond, 
and Smith, 1993; Gordon, Salmond, and Ewing, 1995] 
and this sort of instability never occurred to the other 
three filters. Otherwise, the RMS errors values for the PF 
are similar to the UKF and GMSPPF.  

As shown in Figure 32, the RMS errors for the UKF and 
the GMSPPF are on the same level (better than 0.09 m) 
while the RMS errors for the EKF are on the order of 0.1 
m. It is reasonable for the EKF because the measurement 
noise was set with a standard deviation of 0.1 m. 
However, it is somehow against intuition to see that the 
measurement residuals for the UKF and GMSPPF are 
slightly below the noise level. It remains to determine if 
this is because the filters “follow” the noise and/or have 
some variance reduction capability due to nonlinear 
averaging. 

Figures 33 and 34 show the RMS values of the position 
estimation errors in X and Y, respectively. It can be seen 
that after the initial transient periods (due to large initial 
estimation error covariance and filter gain), the estimation 
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error RMS values remain consistent. The changes in 
position error RMS values are caused by GDOP (see 
Figure 24). In the X-dimension, the GDOP is initially 
close to 1 and grows up to 4.5 after 7500 s. For the first 
500 steps (which started from 100s) as shown in Figure 
33, the initial position error RMS is close to 0.1 m. When 
compared to the measurement error standard deviation, it 
represents a GDOP of 1, as predicted by the geometry. 

In the Y-dimension, the GDOP is initially close to 4.5 and 
decreases down to 1 after 7500 s as shown in Figure 24. 
For the first 500 steps as shown in Figure 34 (which 
actually started from 100 s), the initial position error RMS 
is about 0.43 m for EKF and 0.35 m for UKF and 
GMSPPF. When compared to the measurement error 
standard deviation, it represents a GDOP of 4.3 and 3.5 
for EKF and UKF/GMSPPF, respectively. The EKF, 
though producing larger errors, is closer to the value 
predicted by the geometry. 

Figures 35 and 36 show the RMS values for the velocity 
errors in vx and vy, respectively. The RMS values were 
calculated over 95 Monte Carlo runs but during 7000 time 
steps (covering almost the half sky). The velocity error 
RMS values for UKF and GMSPPF change 
“monotonically” and are consistent with GDOP. That is, 
the vx RMS grows up, as the X-GDOP gets worse. At the 
same time, the vy RMS improves as the Y-GDOP 
becomes smaller.  

However, the velocity error RMS values for EKF are 
more “dramatic” in the sense that the vx RMS grows up 
exponentially rather than near-linearly with the X-GDOP. 
In addition, the vy RMS exhibits a full cycle oscillation. 
This periodic behavior is somewhat correlated to the 
underlying velocity values. For the simulation considered, 
vx is always positive whereas vy changes sign at the mid-
point.   

We only considered about two hours of operation. When 
the simulation is done for the full orbit evolution, periodic 
behaviors are expected. Indeed, this has been observed in 
the GPS OCS Kalman filter with dynamics models 
[Brown, 1991]. For GPS, the state and measurement 
partials and the filter gains are periodic with the period 
being a sidereal day. The modeling errors in f(x) and h(x) 
are therefore repeatable per sidereal day assuming the 
same accuracy from day to day. As a result, the actual 
estimation errors induced by modeling errors in the 
functions f(x) and h(x) will become periodic. 

In our simulation, the state model used by all filters is a 
linear kinematic model with constant velocity and 
acceleration per updating interval. Only the measurement 
equations are nonlinear. The EKF suffers from 
linearization errors while both the UKF and GMSPPF 
make use the nonlinear equations directly. 

The GMSPPF has smaller RMS values than the UKF but 
they are so minuscule to be negligible. We also tested 
other cases. This included (1) different initial conditions 
with up to ten times errors and (2) large number of 
particles (up to 10000), which improved the results 
somewhat for the bootstrap filter but not very much for 
the GMSPPF (considerably slower though). The results 
remain similar. 

In the GMSPPF implementation, we tried three to five 
Gaussian mixture components in each step to fit to the 
particle clouds. The initial mixture component parameters 
are obtained using the k-mean clustering algorithm. The 
actual fitting is done using the expectation-maximization 
(EM) algorithm. The iteration is stopped when the log 
likelihood values between two iterations drops below 
0.001 or the number of iterations exceeds 10.  

To illustrate, Figure 37 shows the result of one fitting 
example in a two-dimensional state space (i.e., position s 
vs. velocity s ) with 1000 particles. The resulting three 
mixture components have weights of 0.45064, 0.37583, 
and 0.17353, respectively. The 3σ ellipses are aligned 
almost with the axes, indicating small correlation between 
the two variables at the start of simulation. 

Figure 38 shows another example of Gaussian mixture 
fitting with three components. Their respective weights 
are 0.40677, 0.39830, and 0.19493. In this case, the 3σ 
ellipses are rotated with respect to the axes, indicating 
large correlation between the two variables at the end of 
simulation. 

It is reasonable to conclude at this point that (1) in the 
cases with Gaussian noise, both the UKF/SPKF and 
GMSPPF outperform the EKF and (2) the UKF/SPFK 
performs practically as good as the GMSPPF but with 
significantly less computation. It is therefore 
recommended to try the UKF/SPKF first and then to 
apply the GMSPPF or other HKPF if the computation 
power permits. 

CONCLUSIONS 

In this paper, we outlined three classes of nonlinear 
filtering techniques: (1) the EKF based on application of 
linear Gaussian KF to linearized process and 
measurement equations, (2) the UKF (SPKF) based on 
deterministic discrete approximation of Gaussian 
distributions and scaled unscented transformation (SUT) 
through nonlinear functions, and (3) the PF based on 
random samples representation of distribution and 
sequential importance sampling. In the latter case, to 
avoid sample depletion and degeneracy, the resampling 
and diversification steps are needed. To bring the 
transition prior-based proposal density close to the 
measurement likelihood function for importance weight 
updating, the hybrid Kalman particle filter was presented,  
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Figure 6 - Orbit Estimated by EKF 
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Figure 7 – Monitor 1’s Measurements for EKF 
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Figure 8 – Monitor 2’s Measurements for EKF 
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Figure 9 – State Estimation Errors for KF 
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Figure 10 – Orbit Estimated by UKF 
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Figure 11 – Monitor 1’s Measurements for UKF 
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Figure 12 – Monitor 2’s Measurements for UKF 
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Figure 13 - State Estimation Errors for UKF 
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Figure 14 – Orbit Estimated by PF 
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Figure 15 – Monitor 1’s Measurements for PF 
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Figure 16 – Monitor 2’s Measurements for PF 
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Figure 17 - State Estimation Errors for PF 
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Figure 18 – Orbit Estimated by GMSPPF 
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Figure 19 – Monitor 1’s Measurements for 

GMSPPF 

0 10 20 30 40 50 60 70 80 90 100
2.565

2.57

2.575

2.58
x 10

7

ra
ng

e

monitor 2: range - gmsppf

true     
measured 
estimated

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.1

0

0.1

0.2

ra
ng

e 
er

ro
r

k

estimate minus true

 
Figure 20 – Monitor 2’s Measurements for 

GMSPPF 
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Figure 21 - State Estimation Errors for GMSPPF 

 
Figure 22 – Orbit Arc Visible to Two Monitor 
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Figure 23 - State Estimation Errors over Long 

Orbit Arc 
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Figure 24 – GDOP for X- and Y-Components 
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Figure 25 - Sigma-Points Selected for Position, 
Velocity, and Acceleration 
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Figure 26 - Sigma Points Selected for Process 

Noise and Measurement Noise 
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Figure 27 - Initial Particles Drawn from 

Estimated Distribution 

 
 

Figure 28 - Initial Weights, Predicted Particles, and 
Likelihood for X 

 
Figure 29 - Updated Weights, State Prior, and 

Weights After Resampling 
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Figure 30 - Weight Index Before and After 

Resampling 
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Figure 31 - Particle Redrawing with Estimated 

Distribution 
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Figure 32 – RMS Values for Measurement 

Residuals 
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Figure 33 – RMS Values for Position Errors in X 
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Figure 34 – RMS Values for Position Errors in Y 
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Figure 35 – RMS Values for Velocity Errors in X 
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Figure 36 – RMS Values for Velocity Errors in Y 
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Figure 37 – Gaussian Mixture Fitting to Particles 
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Figure 38 – Gaussian Mixture Fitting to Particles 

 
 
in which an EKF or UKF (SPKF) is used to time-
propagate each particle or each component of a Gaussian 
mixture fitted from all particles and measurement-update 
the predicted particle or Gaussian mixture component. 
The resulting posterior state distribution is used as the 
proposal distribution for importance sampling (IS)-based 
measurement updating in the second pass. 

This paper also presented computer simulation results of 
four nonlinear filters (EKF, UKF/SPKF, PF, GMSPPF) 
applied to orbit determination using the kinematic 
method. Better results are expected for the dynamic 
method in orbit determination (study under way) where 
complicated nonlinearities are involved in various force 
models. Of particular interest in our current study is the 
use of a hybrid Kalman Particle Filter for ultra-tightly 

coupled GPS/IMU [Abbott, Lillo, and Douglas, 2000] 
using the grid-tracking scheme [Yang, 2003]. It is 
expected that these emerging nonlinear filtering 
techniques will gain more recognition in the navigation 
community and, in coupling with ever-increasing 
computing power, will benefit many navigation 
applications. 
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